I . Cloze Tests

1. If
$$z_n = \left(\frac{2-i}{6}\right)^n + i\left(1+\frac{1}{n}\right)^n$$
, then $\lim_{n\to+\infty} z_n = \underline{\qquad}$.

- 2. If C denotes the circle centered at z_0 positively oriented and n is a positive integer, then $\int_C \frac{1}{(z-z_0)^n} dz = \underline{\qquad}.$
- 3. The radius of the power series $\sum_{n=1}^{\infty} (n^2 + 1)z^n$ is ______.
- 4. The singular points of the function $f(z) = \frac{\sin z}{z(z^2 + 1)}$ are _____.
- 5. $\operatorname{Res}\left(\frac{\exp(z)}{z^{2n}}, 0\right) = \underline{\hspace{1cm}}$, where *n* is a positive integer.
- $6. \quad \frac{d}{dz}e^z\cos^2 z = \underline{\hspace{1cm}}.$
- 7. The main argument and the modulus of the number 1-i are _____.
- 8. The square roots of 1+i are _____.
- 9. The definition of cos *z* is ______.
- 10. $\text{Log}(1+i) = \underline{\hspace{1cm}}$.
- 11. If $z_n = \left(\frac{1+i}{2}\right)^n + i\left(1+\frac{2}{n}\right)^n$, then $\lim_{n \to +\infty} z_n = \underline{\qquad}$.
- 12. If C denotes any simple closed contour and z_0 is a point inside C, then $\int_C \frac{1}{(z-z_0)^n} dz = \underline{\hspace{1cm}}$, where n is an integer.
- 13. The radius of the power series $\sum_{n=1}^{\infty} 3n^2 z^n$ is ______.
- 14. The singular points of the function $f(z) = \frac{\cos z}{z^4(z^2 2)}$ are _____.
- 15. Res $\left(\frac{\exp(z)}{z^n}, 0\right) = \underline{\qquad}$, where *n* is a positive integer.
- 16. The main argument and the modulus of the number $2ie^{\frac{\pi}{4}i}$ are ______.
- 17. The integral of the function $w(t) = t^4(\sin t + i)$ on [-1,1] is ______.

1

- 18. The definition of $\cos z$ is _____.
- 19. Log(1-i) =______.
- 20. The solutions of the equation $e^{2\pi i} 1 = 0$ are _____.
- 21. If $z_n = \left(\frac{3-i}{7}\right)^n + i\left(1+\frac{1}{n}\right)^n$, then $\lim_{n \to +\infty} z_n = \underline{\hspace{1cm}}$.
- 22. If C denotes the circle centered at z_0 positively oriented and n is a positive integer, then $\int_{C} \frac{1}{(z-z_0)^n} dz = \underline{\qquad}.$
- 23. The radius of convergence of $\sum_{n=1}^{\infty} (3n^3 + 2n + 1)z^n$ is ______.
- 24. The singular points of the function $f(z) = \frac{\cos^2 z}{z(z^2 + 3)}$ are _____.
- 25. Res $\left(\frac{\exp(z)}{z^{2n}}, 0\right) = \underline{\qquad}$, where *n* is a positive integer.
- 26. $\frac{d}{dz}(e^z \sin^3 z) =$ _____.
- 27. The main argument and the modulus of the number 1-i are _____.
- 28. The square roots of 1-i are _____.
- 29. The definition of e^z is _____.
- 30. $\text{Log}(1-i) = \underline{\hspace{1cm}}$
- 31. If $z_n = \frac{n}{1-n} + i\left(1 + \frac{2}{n}\right)^n$, then $\lim_{n \to +\infty} z_n = \underline{\hspace{1cm}}$.
- 32. If C denotes the circle centered at z_0 and n is an integer, then $\frac{1}{2\pi i} \int_C \frac{1}{(z-z_0)^n} dz = \underline{\hspace{1cm}}.$
- 33. The radius of convergence of the power series $\sum_{n=1}^{\infty} (n^2 + 1)z^n$ is ______.
- 34. The singular points of the function $f(z) = \frac{\cos z}{z^2 + 1}$ are _____.
- 35. Res $\left(\frac{\sin z}{z^{2n}}, 0\right) = \underline{\qquad}$, where *n* is a positive integer.
- $36. \frac{d}{dz}e^z\sin^2 z = \underline{\hspace{1cm}}.$

- 37. The main argument and the modulus of the number 1+i are _____.
- 38. The square roots of Ai(A > 0) are _____.
- 39. The definition of $\cos z$ is _____.
- 40. $\text{Log}(2+2i) = \underline{\hspace{1cm}}$
- 41. If $z_n = \left(\frac{3-i}{5}\right)^n + i\left(1+\frac{1}{n}\right)^n$, then $\lim_{n \to +\infty} z_n = \underline{\qquad}$.
- 42. If C denotes the circle centered at z_0 positively oriented and n is a positive integer, then $\int_C \frac{1}{(z-z_0)^n} dz = \underline{\qquad}.$
- 43. The radius of convergence of $\sum_{n=1}^{\infty} (n^3 + 2n + 1)z^n$ is ______.
- 44. The singular points of the function $f(z) = \frac{\cos z}{z(z^2 + 3)}$ are _____.
- 45. Res $\left(\frac{\exp(z)}{z^{2n}}, 0\right) = \underline{\qquad}$, where *n* is a positive integer.
- 46. $\frac{d}{dz}(e^z \sin^5 z) =$ ______.
- 47. The main argument and the modulus of the number 1-i are _____.
- 48. The square roots of 1+i are _____.
- 49. The definition of e^z is _____.
- 50. $\text{Log}(1+i) = \underline{\hspace{1cm}}$
- 51. If $z_n = \frac{n}{4+n} + i\left(1 + \frac{3}{n}\right)^n$, then $\lim_{n \to +\infty} z_n = \underline{\hspace{1cm}}$.
- 52. If C denotes the circle centered at z_0 and n is an integer, then $\frac{1}{2\pi i} \int_C \frac{z^n}{(z-z_0)^n} dz = \underline{\hspace{1cm}}.$
- 53. The radius of convergence of the power series $\sum_{n=1}^{\infty} (3n^2 + 5)z^n$ is ______.
- 54. The singular points of the function $f(z) = \frac{\cos z + \sin z}{z^2 + 1}$ are _____.
- 55. Res $\left(\frac{\sin z}{z^{2n}}, 0\right) = \underline{\qquad}$, where *n* is a positive integer.

- $56. \ \frac{d}{dz}e^{5z}\sin^2 z = \underline{\hspace{1cm}}.$
- 57. The main argument and the modulus of the number i-1 are _____.
- 58. The square roots of Bi(B > 0) are _____.
- 59. The definition of $\cos z$ is _____.
- 60. $\text{Log}(5+5i) = \underline{\hspace{1cm}}$
- 61. If $z_n = \left(\frac{1+i}{2}\right)^n + i\left(1+\frac{2}{n}\right)^n$, then $\lim_{n \to +\infty} z_n = \underline{\qquad}$.
- 62. If C denotes any simple closed contour and z_0 is a point inside C, then $\int_C \frac{1}{(z-z_0)^n} dz = \underline{\hspace{1cm}}$, where n is an integer.
- 63. The radius of convergence of the power series $\sum_{n=1}^{\infty} 3n^2 z^n$ is ______.
- 64. The singular points of the function $f(z) = \frac{\cos z}{z^4(z^2 2)}$ are _____.
- 65. Res $\left(\frac{\exp(z)}{z^n}, 0\right) = \underline{\hspace{1cm}}$, where *n* is a positive integer.
- 66. The main argument and the modulus of the number $2ie^{\frac{\pi}{4}i}$ are _____.
- 67. The integral of the function $w(t) = t^4(\sin t + i)$ on [-1,1] is _____.
- 68. The definition of $\cos z$ is _____.
- 69. Log(1-i) =_____
- 70. The solutions of the equation $e^{2zi} 1 = 0$ are _____.
- 71. If $z_n = \left(\frac{1+i}{3}\right)^n + i\left(1+\frac{3}{n}\right)^n$, then $\lim_{n \to +\infty} z_n =$ _____.
- 72. If C denotes any simple closed contour and z_0 is a point inside C, then $\int_C \frac{\sin z}{(z-z_0)^n} dz = \underline{\hspace{1cm}}$, where n is an integer.
- 73. The radius of convergence of the power series $\sum_{n=1}^{\infty} (3n^2 6)z^n$ is ______.
- 74. The singular points of the function $f(z) = \frac{\cos z + z^4}{z^4(z^2 2)}$ are _____.

- 75. Res $\left(\frac{\exp(z)}{z^m}, 0\right) = \underline{\qquad}$, where m is a positive integer.
- 76. The main argument and the modulus of the number $5ie^{\frac{\pi}{4}i}$ are ______.
- 77. The integral of the function $w(t) = t^2(\sin t + ti)$ on [-1,1] is ______
- 78. The definition of $\sin z$ is _____.
- 79. Log(1-i) =_____.
- 80. The solutions of the equation $e^{3zi} 1 = 0$ are ______.
- 81. If $z_n = \left(\frac{3-i}{5}\right)^n + i\left(1+\frac{1}{n}\right)^n$, then $\lim_{n \to +\infty} z_n = \underline{\qquad}$.
- 82. If $z_n = \frac{n}{1-n} + i\left(1 + \frac{2}{n}\right)^n$, then $\lim_{n \to +\infty} z_n = \underline{\qquad}$.
- 83. If $z_n = \left(\frac{1+i}{2}\right)^n + i\left(1+\frac{2}{n}\right)^n$, then $\lim_{n \to +\infty} z_n = \underline{\qquad}$.
- 84. If C denotes the circle centered at z_0 positively oriented and n is a positive integer, then $\int_C \frac{1}{(z-z_0)^n} dz = \underline{\qquad}.$
- 85. If C denotes the circle centered at z_0 and n is an integer, then $\frac{1}{2\pi i} \int_C \frac{1}{(z-z_0)^n} dz = \underline{\hspace{1cm}}.$
- 86. The radius of the power series $\sum_{n=1}^{\infty} (n^2 + 1)z^n$ is ______.
- 87. The radius of the power series $\sum_{n=1}^{\infty} (n^3 + 2n + 1)z^n$ is ______.
- 88. The radius of the power series $\sum_{n=1}^{\infty} 3n^2 z^n$ is _____.
- 89. The singular points of the function $f(z) = \frac{\cos z}{z^4(z^2 2)}$ are _____.
- 90. The singular points of the function $f(z) = \frac{\sin z}{z(z^2 + 3)} + z^3$ are _____.
- 91. The singular points of the function $f(z) = \frac{\cos z}{z^2 + 1} e^z$ are _____.

- 92. Res $\left(\frac{\sin z}{z^{2n}}, 0\right) = \underline{\qquad}$, where *n* is a positive integer.
- 93. Res $\left(\frac{\exp(z)}{z^{2n}}, 0\right) = \underline{\qquad}$, where *n* is a positive integer.
- $94. \frac{d}{dz}(e^z \sin^5 z) = \underline{\hspace{1cm}}.$
- 95. Res $\left(\frac{\exp(z)}{z^n}, 0\right) = \underline{\qquad}$, where *n* is a positive integer.
- 96. The main argument and the modulus of the number 1-i are _____.
- 97. The main argument and the modulus of the number $2ie^{\frac{\pi}{4}i}$ are _____.
- 98. The square roots of 1+i are _____.
- 99. The definition of e^z is _____.
- 100. The definition of $\cos z$ is _____.
- 101. Log(2+2i) =_____.
- 102. The integral of the function $w(t) = t^4(\sin t + i)$ on [-1,1] is _____
- 103. $i^{2i+1} =$ _______
- 104. Log(1+i) =