81.6. Exponential Form

Let r and € be polar coordinates of the point (X,Yy) that corresponds to a nonzero complex

number Z = X+1iy. Since X=rcos# and y=rsing, the number z can be written in
polar form as

z=r(cos@d+isind). (1.6.1)
If z=0, the coordinate € is undefined; and so it is always understood that z = 0 whenever
argz or Argz defined below is discussed.

In complex analysis, the real number r is not
allowed to be negative and is the length of the radius
vector for z; that is, r=z|. The real number &

r represents the angle, measured in radians, that 2z

0 makes with the positive real axis when 2z is
interpreted as a radius vector, see Fig. 1-6.
\/ * As in calculus, @ has an infinite number of
possible values, including negative ones, that differ by
integral multiples of 27 . Those values can be
determined from the equation

tand =y/x,

where the quadrant containing the argument of z, and the set of all such values is denoted by
Argz . The principal value of Argz, denoted by argz, is the unique value ® such that

— 7 < ® < . Note that

z=x+iy

Fig. 1-6

Argz ={argz + 2nt:n=0,+1,+2,.. },
simply, we write
Argz =argz + 2nz(n=0,£1,%2,...). (1.6.2)
Also, when Z is anegative real number, argz hasvalue z,not —r.
Example 1. The complex number —1—1i, which lies in the third quadrant, has principal

argument —37z /4. Thatis, arg(-1—1) = —%.

It must be emphasized that, because of the restriction —7z <® <7 of the principal
argument @ , it is not true that arg(—-1—1i) =5n/4.
According to equation (1.6.2), we have

Arg(—1—i) = —%”" Lonm (n=0+142,..).

Note that the term argz on the right-hand side of equation (1.6.2) can be replaced by any
particular value of Argz and that one can write, for instance,

Arg(-1-i) = %n +2nt (n=0,£1,42,..)).

The symbol €', or exp(i@), is defined by means of Euler’s formula as

e'’ =cos@+ising, (1.6.3)
where @ is to be measured in radians. It enables us to write the polar form (1.6.1) more
compactly in exponential form as

z=re" (1.6.4)
The choice of the symbol e will be fully motivated later on is Sec.2.8. Its use in Sec. 1.7 will,
however, suggest that it is a natural choice.
Example 2. The number —1—1i in Example 1 has exponential form



-1-i= \/Eexp[i(— S%H : (1.6.5)

Since e =e'® | this can also be written —1—i =+/2e7*"* . Expression (1.6.5) is, of

course, only one of an infinite number of possibilities for the exponential form of —1—1i:
. [ 3
-1-i= \/fexp[l(— Tn + Znnﬂ (n=0,+1,42,..). (1.6.6)

Note how expression (1.6.4) with r =1 tells us that the numbers €'’ lie on the circle

centered at the origin with radius unity, as shown in Fig. 1-7. Values of e'’ are, then, immediate
from that figure, without reference to Euler’s formula. It is, for instance, geometrically obvious

that €7 =-1e"/2=i, and e ™" =1.
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Note, too, that the equation
z=Re" (0<0<2n) (1.6.7)

is a parametric representation of the circle |z |= R, centered at the origin with radius R . As the
parameter @ increases from 6 =0 to @ =2, the point Z starts from the positive real axis
and traverses the circle once in the counterclockwise direction. More generally, the circle
| z—12z, |= R, whose centeris z, and whose radiusis R, has the parametric representation

z=17,+Re” (0<0<2n). (1.6.8)
This can be seen vectorially (Fig. 1-8) by noting that a point z traversing the circle
|z-2, =R

once in the counterclockwise direction corresponds to the sum of the fixed vector z, and a
vector of length R whose angle of inclination & varies from 8 =0 to 8 =2x.



