§7.4. Jordan's Lemma

In the evaluation of integrals of the type treated in Sec. 7.3, it is sometimes necessary to use *Jordan's lemma*, which is stated here as a theorem.

Theorem 7.4.1(Jordan). Suppose that

- (i) a function f(z) is analytic at all points z in the upper half plane $y \ge 0$ that are exterior to a circle $|z| = R_0$;
 - (ii) C_R denotes a semicircle $z=Re^{i\theta}(0\leq\theta\leq\pi)$, where $R>R_0$ (Fig. 7-4);
 - (iii) there is a constant M_R such that $|f(z)| \le M_R$, $\forall z \in C_R$, and $\lim_{R \to \infty} M_R = 0$.

Then, for every positive constant a,

$$\lim_{R \to \infty} \int_{C_R} f(z)e^{iaz}dz = 0. \tag{7.4.1}$$

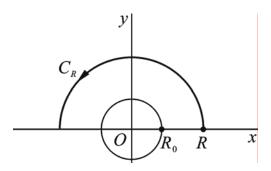


Fig. 7-4

Proof. The proof is based on a result that is known as *Jordan's inequality:*

$$\int_0^{\pi} e^{-R\sin\theta} d\theta < \frac{\pi}{R} \quad (R > 0). \tag{7.4.2}$$

To verify this inequality, we first note from the graphs of the functions $y = \sin \theta$ and $y = 2\theta/\pi$ when $0 \le \theta \le \pi/2$ (Fig. 7-5) that $\sin \theta \ge 2\theta/\pi$ for all values of θ in that interval. Consequently, if R > 0,

$$e^{-R\sin\theta} \le e^{-2R\theta/\pi}$$
 when $0 \le \theta \le \frac{\pi}{2}$;

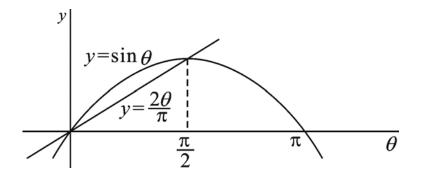
and so

$$\int_0^{\pi/2} e^{-R\sin\theta} d\theta \le \int_0^{\pi/2} e^{-2R\theta/\pi} d\theta = \frac{\pi}{2R} (1 - e^{-R}).$$

Hence

$$\int_0^{\pi/2} e^{-R\sin\theta} d\theta < \frac{\pi}{2R} \quad (R > 0) . \tag{7.4.3}$$

But this is just another form of inequality (7.4.2), since the graph of $y = \sin \theta$ is symmetric with respect to the vertical line $\theta = \pi/2$ on the interval $0 \le \theta \le \pi$.



Turning now to the verification of limit (7.4.1), we accept statements (i) - (iii) in the theorem and write

$$\int_{C_{B}} f(z)e^{iaz}dz = \int_{0}^{\pi} f(Re^{i\theta}) \exp(iaRe^{i\theta})iRe^{i\theta}d\theta.$$

Since

$$\mid f(Re^{i\theta}) \mid \leq M_{_R} \ \ {
m and} \ \ \mid \exp(iaRe^{i\theta}) \mid \leq e^{-aR\sin\theta}$$
 and in view of Jordan's inequality (7.4.2), it follows that

$$\left| \int_{C_R} f(z) e^{iaz} dz \right| \le M_R R \int_0^{\pi} e^{-aR\sin\theta} d\theta$$

$$< \frac{M_R \pi}{a}.$$

Limit (7.4.1) is then evident, since $M_R \to 0$ as $R \to \infty$. The proof is completed.

Example. Let us find the Cauchy principal value of the integral

$$\int_{-\infty}^{\infty} \frac{x \sin x dx}{x^2 + 2x + 2}$$

As usual, the existence of the value in question will be established by our actually finding it. We write

$$f(z) = \frac{z}{z^2 + 2z + 2} = \frac{z}{(z - z_1)(z - \overline{z_1})},$$

where $z_1 = -1 + i$. The point z_1 , which lies above the x axis, is a simple pole of the function $f(z)e^{iz}$, with residue

$$B_1 = \frac{z_1 e^{iz_1}}{z_1 - z_1}. (7.4.4)$$

Hence, when $R>\sqrt{2}$ and C_R denotes the upper half of the positively oriented circle |z|=R ,

$$\int_{-R}^{R} \frac{xe^{ix}dx}{x^2 + 2x + 2} = 2\pi i B_1 - \int_{C_R} f(z)e^{iz}dz;$$

and this means that

$$\int_{-R}^{R} \frac{x \sin x dx}{x^2 + 2x + 2} = \operatorname{Im}(2\pi i B_1) - \operatorname{Im} \int_{C_R} f(z) e^{iz} dz.$$
 (7.4.5)

We note that, when z is a point on C_R , $|f(z)| \le M_R$ where

$$M_R = \frac{R}{(R - \sqrt{2})^2} \rightarrow 0 (R \rightarrow \infty)$$

By Theorem 7.4.1,

$$\left| \operatorname{Im} \int_{C_R} f(z) e^{iz} dz \right| \le \left| \int_{C_R} f(z) e^{iz} dz \right| \to 0 (R \to \infty). \tag{7.4.6}$$

Consequently, equation (7.4.5), together with expression (7.4.4) for the residue B_1 , tells us that

$$P.V. \int_{-\infty}^{\infty} \frac{x \sin x dx}{x^2 + 2x + 2} = \text{Im}(2\pi i B_1) = \frac{\pi}{e} (\sin 1 + \cos 1). \tag{7.4.7}$$