
§7.4. Jordan’s Lemma 
 
In the evaluation of integrals of the type treated in Sec. 7.3, it is sometimes necessary to use 
Jordan’s lemma, which is stated here as a theorem. 
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Proof. The proof is based on a result that is known as Jordan’s inequality: 
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To verify this inequality, we first note from the graphs of the functions θsin=y  and 
πθ /2=y  when 2/0 πθ ≤≤  (Fig. 7-5) that πθθ /2sin ≥  for all values of θ  in that 
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But this is just another form of inequality (7.4.2), since the graph of θsin=y  is symmetric 
with respect to the vertical line  on the interval 2/π=θ πθ ≤≤0 . 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 

Turning now to the verification of limit (7.4.1), we accept statements  in the 
theorem and write 
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Limit (7.4.1) is then evident, since  as 0→RM ∞→R . The proof is completed. 
Example. Let us find the Cauchy principal value of the integral 
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As usual, the existence of the value in question will be established by our actually finding it. 
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Hence, when 2>R  and  denotes the upper half of the positively oriented circle , RC Rz =||
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and this means that 
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We note that, when z  is a point on , RC RMzf ≤|)(|  where  
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By Theorem 7.4.1,  
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Consequently, equation (7.4.5), together with expression (7.4.4) for the residue , tells us that 1B
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