
§7.8. Argument Principle 
 
A function  is said to be meromorphic in a domain f D  if it is analytic throughout D  except 
for possible poles. Suppose now that  is meromorphic in the domain interior to a positively 
oriented simple closed contour  and that it is analytic and nonzero on . The image  of 

 under the transformation  is a closed contour, not necessarily simple, in the  
plane (Fig. 7-10). As a point 
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z  traverses  in the positive direction, its images  traverses 

 in a particular direction that determines the orientation of 
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Γ Γ . Note that, since  has no 
zeros on , the contour  does not pass through the origin in the  plane. 
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Let  and  be points on w 0w Γ , where  is fixed and 0w 0φ  is a value of . Then 

let  vary continuously, starting with the value 
0Argw

warg 0φ , as the point  begins at the point 

 and traverses 

w

0w Γ  once in the direction of orientation assigned to it by the mapping 

. When  returns to the point , where it started,  assumes a particular 

value of , which we denote by 

)(zfw = w 0w warg

0arg w 1φ . Thus the change in  as  describes Γ  once 

in its direction of orientation is 

warg w

01 φφ − . This change is, of course, independent of the point  

chosen to determine it. Since , the number 
0w

)(zfw = 01 φφ −  is, in fact, the change in argument 

of  as )(zf z  describes  once in the positive direction, starting with a point ; and we 
write 
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The value of  is evidently an integral multiple of )(arg zfCΔ π2 , and the integer 
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represents the number of times that the point  winds around the origin in the plane. For that 
reason, this integer is sometimes called the winding number of 

w
Γ  with respect to the origin 

. It is positive if  winds around the origin in the counterclockwise direction and 
negative if it winds clockwise around that point. The winding number is always zero when 

0=w Γ
Γ  

does not enclose the origin. The verification of this fact for a special case is left to the exercises. 
The winding number can be determined from the number of zeros and poles of  interior 

to . The number of poles is necessarily finite since the accumulation points of the poles must 
not isolated singular points. Likewise, it is easily shown (Exercise 3, Sec. 7.8) that the zeros of  
are finite in number. Suppose now that  has 
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f Z  zeros and P  poles in the domain interior to 



C , where we agree that  has  zeros at a point  if it has a zero of order  there; 

and if  has a pole of order  at , that pole is to be counted  times. The following 
theorem, which is known as the argument principle, states that the winding number is simply the 
difference 

f 0m 0z 0m
f pm 0z pm

PZ − . 
Theorem 7.8.1. Suppose that 

)(i  a function  is meromorphic in the domain interior to a positively oriented simple 
closed contour ; 
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)(ii   is analytic and nonzero on ; )(zf C
)(iii  counting multiplicities, Z  is the number of zeros and P  is the number of poles of 

 inside C . )(zf
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Proof. To prove this, we evaluate the integral of )(/)( zfzf ′  around  in two different 
ways. First, we let 
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Since, under the transformation , the image )(zfw = Γ  of  never passes through the origin 
in the  plane, the image of any point 

C
w )(tzz =  on C  can be expressed in exponential form 

as  
)](exp[)( titw φρ= . 

Thus 
)()()]([ )( btaettzf ti ≤≤= φρ ;              (7.8.3) 

and, along each of the smooth arcs making up the contour Γ , it follows that (see Exercise 5, Sec. 
4.3) 
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Since )(tρ′  and )(tφ ′  are piecewise continuous on the interval bta ≤≤ , we can now use 
expressions (7.8.3) and (7.8.4) to write integral (7.8.2) as follows: 
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But 
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Another way to evaluate integral (7.8.5) is to use Cauchy’s residue theorem. If  has a zero 
of order  at , then (Sec. 6.7) 
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where  is analytic and nonzero at . Hence )(zg 0z
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Since  is analytic at , it has a Taylor series representation about that point; and )(/)( zgzg ′ 0z



so equation (7.8.7) tells us that  has a simple pole at , with residue . If, on 

the other hand,  has a pole of order  at , we know from the theorem in Sec. 6.5 that 
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where )(zφ  is analytic and nonzero at . Because expression (7.8.8) has the same form as 

expression (7.8.6), with the positive integer  in equation (7.8.6) replaced by , it is clear 

from equation (7.8.7) that  has a simple pole at , with residue . Thus, we 

observe that the integrand  is analytic inside and on  except at the points inside 
 at which the zeros and poles of  occur.  
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follows from the discussion above and the residue theorem that 
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Expression (7.8.1) now follows by equating the right-hand sides of equations (7.8.5) and (7.8.9). 
This completes the proof. 

Example. The only singularity of the function  is a pole of order 2 at the origin, and 
there are no zeros in the finite plane. In particular, this function is analytic and nonzero on the unit 
circle  
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If we let  denote that positively oriented circle, our theorem tells us that C
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That is, the image Γ  of  under the transformation  winds around the origin 
 twice in the clockwise direction. This can be verified directly by noting that  has the 

parametric representation  
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