§87.5. Indented Paths

In this and the following section, we illustrate the use of indented paths. We begin with an
important limit that will be used in the example in this section.
Theorem 7.5.1. Suppose that

(i) afunction f(z) has a simple pole at a point Z = X, on the real axis, with a Laurent
series representation in a punctured disk 0 <| z—X, |[< R, (Fig. 7-7) and with residue By;

(i) C, denotes the upper half of a circle |2—2z,|=p, where p<R, and the
clockwise direction is taken.

Then
lim| f(z)dz=-B,mri. (7.5.1)
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Proof. From the assumption (i), the L iction f can be written as

F(2)=g(2)+ 20 (0</2-%|<R,),
Z-X,

where g(z):Zan(z—xo)” (lz—X%, < R,). Thus
n=0

dz
Z—- X,

Lp f(z)dz = JCP g(z)dz + Bojcp (7.5.2)

Now the function g(z) is continuous when |z -z, |< R,, according to Corollary 5.8.1.
Hence if we choose a number p, such that p < p, <R, (see Fig. 7-7), it must be bounded
on the closed disk |z —X, [< p,, according to Sec. 2.7. That is, there is a nonnegative constant
M such that| g(z) < M whenever |z —X, |< p,; and, since the length L of the path C
is L =zp, it follows that

<ML = Mmnp.

ICP g(z)dz

Consequently,
LI_r)TJ .[Cp g(z)dz=0. (7.5.3)



Since the semicircle — Cp has parametric representation
z=x,+pe’ (0<6<7),
the second integral on the right in equation (7.5.2) has the value

0 0 p

Thus

. dz .
lim =—im. (7.5.4)
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Limit (7.5.1) now follows by letting o tend to zero on each side of equation (7.5.2) and

referring to limits (7.5.3) and (7.5.4). This completes the proof.
Example. Modifying the method used in Secs. 7.3 and 7.4, we derive here the integration
formula

PIMNX gy =T (7.5.5)
o X 2
by integrating e” [z around the simple closed contour shown in Fig. 7-8. In that figure, o and
R denote positive real numbers, where p<R; and L, and L, represent the intervals
p<X<R and —R < X<—p, respectively, on the real axis. While the semicircle C is as

in Secs. 7.3 and 7.4, the semicircle Cp is introduced here in order to avoid integrating through

the singularity z=0 of e”/z.
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The Cauchy integral theorem tel
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That is,
eiz eiz eiz eiz
—dz + ———.[ —dz—J' —dz. (7.5.6)
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Moreover, since the legs L, and L, have parametric representations
Z=X(p<Xx<R) and z=X(-R<x<-p), (7.5.7)

respectively, the left-hand side of equation (7.5.6) can be written

'[Lidz+J.L%dz:J';%dx+ L dx Zj
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Consequently,
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Now, from the Laurent series representation
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it is clear that ”/Z has a simple pole at the origin, with residue unity. So, according to
Theorem 7.5.1,

: e" .

lim| —dz=-mni.

p—0JC, 7
Also, since
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when Z isapointon Cg, we know from Jordan’s lemma (Theorem 7.4.1) that
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Thus, by letting p tend to 0 in equation (7.5.8) and then letting R tend to oo, we arrive at the
resinr .
result ZIJ.0 ——dr = mi, which is, in fact, formula (7.5.5).
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