
§7.5. Indented Paths 
 

In this and the following section, we illustrate the use of indented paths. We begin with an 
important limit that will be used in the example in this section. 

Theorem 7.5.1. Suppose that 
)(i  a function  has a simple pole at a point )(zf 0xz =  on the real axis, with a Laurent 

series representation in a punctured disk 20 ||0 Rxz <−<  (Fig. 7-7) and with residue ; 0B
)(ii   denotes the upper half of a circle ρC ρ=− || 0zz , where 2R<ρ  and the 

clockwise direction is taken. 
Then 
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Proof. From the assumption (i), the Laurent series of the function  can be written as fFig. 7-7 
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Now the function  is continuous when )(zg 20 || Rzz <− , according to Corollary 5.8.1. 

Hence if we choose a number 0ρ  such that 20 R<< ρρ  (see Fig. 7-7), it must be bounded 

on the closed disk 00 || ρ≤− xz , according to Sec. 2.7. That is, there is a nonnegative constant 

M  such that Mzg ≤|)(|  whenever 00 || ρ≤− xz ; and, since the length L  of the path  

is 
ρC

πρ=L , it follows that 
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Since the semicircle  has parametric representation ρC−

  , )0(0 πθρ θ ≤≤+= iexz
the second integral on the right in equation (7.5.2) has the value 
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Limit (7.5.1) now follows by letting ρ  tend to zero on each side of equation (7.5.2) and 
referring to limits (7.5.3) and (7.5.4). This completes the proof. 

Example. Modifying the method used in Secs. 7.3 and 7.4, we derive here the integration 
formula 
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by integrating  around the simple closed contour shown in Fig. 7-8. In that figure, zeiz / ρ  and 
R  denote positive real numbers, where R<ρ ; and  and  represent the intervals 1L 2L

Rx ≤≤ρ  and ρ−≤≤− xR , respectively, on the real axis. While the semicircle  is as 
in Secs. 7.3 and 7.4, the semicircle  is introduced here in order to avoid integrating through 

the singularity  of . 

RC

ρC

0=z zeiz /
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Cauchy integral theorem tells us that 
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Fig. 7-8 

That is,  
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Moreover, since the legs  and  have parametric representations 1L 2L
)( Rxxz ≤≤= ρ  and )( ρ−≤≤−= xRxz ,           (7.5.7) 

respectively, the left-hand side of equation (7.5.6) can be written 
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Consequently, 
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Now, from the Laurent series representation 
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it is clear that  has a simple pole at the origin, with residue unity. So, according to 
Theorem 7.5.1, 
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when z  is a point on , we know from Jordan’s lemma (Theorem 7.4.1) that RC
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Thus, by letting ρ  tend to 0 in equation (7.5.8) and then letting R  tend to ∞ , we arrive at the 

result ∫
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ri , which is, in fact, formula (7.5.5).  

 


