
§3.8. Inverse Trigonometric and Hyperbolic Functions 
 
Inverses of the trigonometric and hyperbolic functions can be described in terms of logarithms. In 
order to define the inverse sine function , we write  1sin −
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If we put this equation in the form 
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which is quadratic in , and solve for  [see Exercise 8 (a), Sec. 1.9], we find that  iwe iwe
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where  is, of course, a double-valued function of . Taking logarithms of each side 

of equation (3.8.1) and recalling that , we arrive at the expression 
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The following example illustrates the fact that  is a multiple-valued function, with 
infinitely many values at each point 
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Example. Expression (3.8.2) tells us that  
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Then, the numbers 
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constitute the set of values of )21(Log ± . Thus, in rectangular form, 
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One can apply the technique used to derive expression (3.8.2) for  to show that z1sin −
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zi
ziiz

−
+

=− Log
2

tan 1 .                       (3.8.4) 

The functions  and  are also multiple-values. When specific branches of 
the square root and logarithmic functions are used, all three inverse functions become 
single-valued and analytic because they are then compositions of analytic functions. 
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The derivatives of these three functions are readily obtained from the above expressions. The 
derivatives of the first two depend on the values chosen for the square roots: 
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The derivative of the last one 2
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which the function is made single-valued. 
Inverse hyperbolic functions can be treated in a corresponding manner. It turns out that 
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Finally, we remark that common alternative notation for all of these inverse functions is 
, etc. zarcsin

 


