
§7.2. Examples 
 

We turn now to an illustration of the method in Sec. 7.1 for evaluating improper integrals. 
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it is clear that none of them lies on the real axis. The first three roots, and 
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lie in the upper half plane (Fig. 7-2) and the other three lie in the lower one.  
 

Fig. 7-2 

 
 
 
 
 
 
 
 
 
 
 
 
 
When 1>R , the points  lie in the interior of the semicircular region bounded by 

the segment 
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semicircular region, we see that 
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where  is the residue of  at kB )(zf )2,1,0( =kck . 

With the aid of Theorem 6.8.2 in Sec.6.8, we find that the points  are simple poles of  
and that 
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and equation (7.2.1) can be put in the form 
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which is valid for all values of R  greater that 1. 
Next, we show that the value of the integral on the right in equation (7.2.2) tends to 0 as R  

tends to . To do this, we observe that when ∞ Rz =|| , 
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as R  tends to . Thus, . It now follows from equation (7.2.2) that ∞ ∫ =
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Since the integrand here is even, we know from equations (7.1.6) in Sec.7.1 and Theorem 7.1.2 
that 
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