
§7.6. An Indentation Around a Branch Point 
 

The example here involves the same indented path that was used in the example in the previous 
section. The indentation is, however, due to a branch point, rather than an isolated singularity. 

Example. The integration formula 
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can be derived by considering the branch 
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of the multiple-valued function . This branch, whose branch cut consists of 
the origin and the negative imaginary axis, is analytic everywhere in the indicated domain except 
at the point . In order that the isolated singularity  always be inside the closed path, 
we require that 
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R<< 2ρ . See Fig. 7-9, where the isolated singularity and the branch point 

 are shown and where the same labels , and  as in Fig. 7-9 are used. 
According to Cauchy’s residue theorem, 
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That is, 
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the parametric representations 
)( Rxxz ≤≤= ρ  and )( ρ−≤≤−= xRxz            (7.6.3) 

for the legs  and 1L 2L−  can be used to write the left-hand side of equation (7.6.2) as 
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Fig. 7-9 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Also, since 
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Equation (7.6.2) thus becomes 
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and, by equating the real parts on each side here, we find that 

∫ ∫∫
ρ

−−−
π

=
+ρ C C

R

R

dzzfdzzfdr
r

r )(Re)(Re)12(ln
16)4(

ln2 22 .  (7.6.5) 

It remains only to show that 
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Limits (7.6.6) are established as follows. First, we note that if 10 << ρ  and  is 
a point on , then 
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As a consequence. 
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and, by Hospital’s rule, the product ρρ ln  in the numerator on the far right here tends to 0 as 
ρ  tends to 0. So the first of limits (7.6.6) clearly holds. Likewise, by writing 
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and using Hospital’s rule to show that the quotient  tends to 0 as RR /)(ln R  tends to , we 
obtain the second of limits (7.6.6). 
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Note how another integration formula, namely 
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follows by equating imaginary, rather than real, parts on each side of equation (7.6.4): 
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Formula (7.6.7) is then obtained by letting ρ  and R  tend to 0 and ∞ , respectively, since 
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