87.6. An Indentation Around a Branch Point

The example here involves the same indented path that was used in the example in the previous
section. The indentation is, however, due to a branch point, rather than an isolated singularity.
Example. The integration formula
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can be derived by considering the branch
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of the multiple-valued function (Logz)/(z* +4). This branch, whose branch cut consists of

the origin and the negative imaginary axis, is analytic everywhere in the indicated domain except
at the point z = 2i. In order that the isolated singularity 2i always be inside the closed path,
we require that p <2 < R. See Fig. 7-9, where the isolated singularity and the branch point

z=0 are shown and where the same labels L ,L,,C , and C; as in Fig. 7-9 are used.
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According to Cauchy’s residue theorem,
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That is,
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the parametric representations
Z=X(p<x<R) and z=X(-R<x<-p) (7.6.3)
forthelegs L, and — L, can be used to write the left-hand side of equation (7.6.2) as
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Also, since
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Equation (7.6.2) thus becomes
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and, by equating the real parts on each side here, we find that
2jR'”—rdr =T (n2-1)-Re[ f(z)dz-Re| f(z)dz. (765)
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It remains only to show that
limRe | f(z)dz=0 and limRe LR f(z)dz=0. (7.6.6)

Limits (7.6.6) are established as follows. First, we note thatif 0 < p <1 and z = peig is
a point on Cp,then
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As a consequence.
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and, by Hospital’s rule, the product p In p in the numerator on the far right here tends to 0 as
p tends to 0. So the first of limits (7.6.6) clearly holds. Likewise, by writing
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and using Hospital’s rule to show that the quotient (INR)/R tendsto 0 as R tendsto oo, we

obtain the second of limits (7.6.6).
Note how another integration formula, namely
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follows by equating imaginary, rather than real, parts on each side of equation (7.6.4):
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Formula (7.6.7) is then obtained by letting o and R tendtoOand oo, respectively, since
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