
§7.7. Definite Integrals Involving Sine and Cosine 
 
The method of residues is also useful in evaluating certain definite integrals of the type 
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The fact that θ  varies from 0 to π2  suggests that we consider θ  as an argument of a point 
z  on the circle C  centered at the origin. Hence we write 
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Formally, then, 
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enable us to transform integral (7.7.1) into the contour integral 
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of a function of z  around the circle  in the positive direction. The original integral (7.7.1) is, 
of course, simply a parametric form of integral (7.7.4), in accordance with expression (7.7.2), Sec. 
4.4. When the integrand of integral (7.7.4) is a rational function of 

C

z , we can evaluate that 
integral by means of Cauchy’s residue theorem once the zeros of the polynomial in the 
denominator have been located and provided that none lie on . C

Example. Let us show that 
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This integration formula is clearly valid when 0=a , and we exclude that case in our derivation. 
With substitutions (7.7.3), the integral takes the form 
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where  is the positively oriented circle C 1|| =z . The quadratic formula reveals that the 
denominator of the integrand here has the pure imaginary zeros 
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So if  denotes the integrand, then )(zf
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Also, since , it follows that 1|| 21 =zz 1|| 1 <z . Hence there are no singular points on , and 
the only one interior to it is the point . The corresponding residue  is found by writing 
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This shows that  is a simple pole and that 1z
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Consequently,  
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and integration formula (7.7.5) follows. 
The method just illustrated applies equally well when the arguments of the sine and cosine 

are integral multiples of θ . One can use equation (7.7.2) to write, for example. 
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